3.136 \(\int \frac{\sqrt{b \sqrt [3]{x}+a x}}{x^2} \, dx\)

Optimal. Leaf size=325 \[ \frac{6 a^{5/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a x+b \sqrt [3]{x}}}-\frac{12 a^{5/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{12 a^{3/2} \sqrt [3]{x} \left (a x^{2/3}+b\right )}{5 b \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{a x+b \sqrt [3]{x}}}-\frac{12 a \sqrt{a x+b \sqrt [3]{x}}}{5 b \sqrt [3]{x}}-\frac{6 \sqrt{a x+b \sqrt [3]{x}}}{5 x} \]

[Out]

(12*a^(3/2)*(b + a*x^(2/3))*x^(1/3))/(5*b*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[b*x^(1/3) + a*x]) - (6*Sqrt[b*x^(1/
3) + a*x])/(5*x) - (12*a*Sqrt[b*x^(1/3) + a*x])/(5*b*x^(1/3)) - (12*a^(5/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(
b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1/6)*EllipticE[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*
b^(3/4)*Sqrt[b*x^(1/3) + a*x]) + (6*a^(5/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a
]*x^(1/3))^2]*x^(1/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[b*x^(1/3) + a*x])

________________________________________________________________________________________

Rubi [A]  time = 0.352673, antiderivative size = 325, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.421, Rules used = {2018, 2020, 2025, 2032, 329, 305, 220, 1196} \[ \frac{6 a^{5/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a x+b \sqrt [3]{x}}}-\frac{12 a^{5/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{12 a^{3/2} \sqrt [3]{x} \left (a x^{2/3}+b\right )}{5 b \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{a x+b \sqrt [3]{x}}}-\frac{12 a \sqrt{a x+b \sqrt [3]{x}}}{5 b \sqrt [3]{x}}-\frac{6 \sqrt{a x+b \sqrt [3]{x}}}{5 x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^(1/3) + a*x]/x^2,x]

[Out]

(12*a^(3/2)*(b + a*x^(2/3))*x^(1/3))/(5*b*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[b*x^(1/3) + a*x]) - (6*Sqrt[b*x^(1/
3) + a*x])/(5*x) - (12*a*Sqrt[b*x^(1/3) + a*x])/(5*b*x^(1/3)) - (12*a^(5/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(
b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1/6)*EllipticE[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*
b^(3/4)*Sqrt[b*x^(1/3) + a*x]) + (6*a^(5/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a
]*x^(1/3))^2]*x^(1/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[b*x^(1/3) + a*x])

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\sqrt{b \sqrt [3]{x}+a x}}{x^2} \, dx &=3 \operatorname{Subst}\left (\int \frac{\sqrt{b x+a x^3}}{x^4} \, dx,x,\sqrt [3]{x}\right )\\ &=-\frac{6 \sqrt{b \sqrt [3]{x}+a x}}{5 x}+\frac{1}{5} (6 a) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )\\ &=-\frac{6 \sqrt{b \sqrt [3]{x}+a x}}{5 x}-\frac{12 a \sqrt{b \sqrt [3]{x}+a x}}{5 b \sqrt [3]{x}}+\frac{\left (6 a^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{5 b}\\ &=-\frac{6 \sqrt{b \sqrt [3]{x}+a x}}{5 x}-\frac{12 a \sqrt{b \sqrt [3]{x}+a x}}{5 b \sqrt [3]{x}}+\frac{\left (6 a^2 \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{\sqrt{b+a x^2}} \, dx,x,\sqrt [3]{x}\right )}{5 b \sqrt{b \sqrt [3]{x}+a x}}\\ &=-\frac{6 \sqrt{b \sqrt [3]{x}+a x}}{5 x}-\frac{12 a \sqrt{b \sqrt [3]{x}+a x}}{5 b \sqrt [3]{x}}+\frac{\left (12 a^2 \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{5 b \sqrt{b \sqrt [3]{x}+a x}}\\ &=-\frac{6 \sqrt{b \sqrt [3]{x}+a x}}{5 x}-\frac{12 a \sqrt{b \sqrt [3]{x}+a x}}{5 b \sqrt [3]{x}}+\frac{\left (12 a^{3/2} \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{5 \sqrt{b} \sqrt{b \sqrt [3]{x}+a x}}-\frac{\left (12 a^{3/2} \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{a} x^2}{\sqrt{b}}}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{5 \sqrt{b} \sqrt{b \sqrt [3]{x}+a x}}\\ &=\frac{12 a^{3/2} \left (b+a x^{2/3}\right ) \sqrt [3]{x}}{5 b \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{b \sqrt [3]{x}+a x}}-\frac{6 \sqrt{b \sqrt [3]{x}+a x}}{5 x}-\frac{12 a \sqrt{b \sqrt [3]{x}+a x}}{5 b \sqrt [3]{x}}-\frac{12 a^{5/4} \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{\frac{b+a x^{2/3}}{\left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b \sqrt [3]{x}+a x}}+\frac{6 a^{5/4} \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{\frac{b+a x^{2/3}}{\left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 b^{3/4} \sqrt{b \sqrt [3]{x}+a x}}\\ \end{align*}

Mathematica [C]  time = 0.046491, size = 59, normalized size = 0.18 \[ -\frac{6 \sqrt{a x+b \sqrt [3]{x}} \, _2F_1\left (-\frac{5}{4},-\frac{1}{2};-\frac{1}{4};-\frac{a x^{2/3}}{b}\right )}{5 x \sqrt{\frac{a x^{2/3}}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^(1/3) + a*x]/x^2,x]

[Out]

(-6*Sqrt[b*x^(1/3) + a*x]*Hypergeometric2F1[-5/4, -1/2, -1/4, -((a*x^(2/3))/b)])/(5*Sqrt[1 + (a*x^(2/3))/b]*x)

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 213, normalized size = 0.7 \begin{align*} -{\frac{6}{5\,x}\sqrt{b\sqrt [3]{x}+ax}}-{\frac{12\,a}{5\,b} \left ( b+a{x}^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt{\sqrt [3]{x} \left ( b+a{x}^{{\frac{2}{3}}} \right ) }}}}+{\frac{6\,a}{5\,b}\sqrt{-ab}\sqrt{{a \left ( \sqrt [3]{x}+{\frac{1}{a}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-2\,{\frac{a}{\sqrt{-ab}} \left ( \sqrt [3]{x}-{\frac{\sqrt{-ab}}{a}} \right ) }}\sqrt{-{a\sqrt [3]{x}{\frac{1}{\sqrt{-ab}}}}} \left ( -2\,{\frac{\sqrt{-ab}}{a}{\it EllipticE} \left ( \sqrt{{\frac{a}{\sqrt{-ab}} \left ( \sqrt [3]{x}+{\frac{\sqrt{-ab}}{a}} \right ) }},1/2\,\sqrt{2} \right ) }+{\frac{1}{a}\sqrt{-ab}{\it EllipticF} \left ( \sqrt{{a \left ( \sqrt [3]{x}+{\frac{1}{a}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) } \right ){\frac{1}{\sqrt{b\sqrt [3]{x}+ax}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^(1/3)+a*x)^(1/2)/x^2,x)

[Out]

-6/5*(b*x^(1/3)+a*x)^(1/2)/x-12/5*(b+a*x^(2/3))/b*a/(x^(1/3)*(b+a*x^(2/3)))^(1/2)+6/5/b*a*(-a*b)^(1/2)*((x^(1/
3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2)*(-2*(x^(1/3)-1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2)*(-x^(1/3)*a/(-
a*b)^(1/2))^(1/2)/(b*x^(1/3)+a*x)^(1/2)*(-2/a*(-a*b)^(1/2)*EllipticE(((x^(1/3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2
))^(1/2),1/2*2^(1/2))+1/a*(-a*b)^(1/2)*EllipticF(((x^(1/3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2),1/2*2^(1/2)
))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x + b x^{\frac{1}{3}}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(a*x + b*x^(1/3))/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a x + b x^{\frac{1}{3}}}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(a*x + b*x^(1/3))/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x + b \sqrt [3]{x}}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**(1/3)+a*x)**(1/2)/x**2,x)

[Out]

Integral(sqrt(a*x + b*x**(1/3))/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x + b x^{\frac{1}{3}}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(a*x + b*x^(1/3))/x^2, x)